General Types/Groups of problems:

Buffers General	p1	Titration Graphs and Recognition	p10	1
What Kind of Solution/pH at End?	p2	Titration Calculations	p11	Ι.
Preparation and Recognition of Buffers	p4	pH Estimations/Calculations after acid/base are added (including at Equivalence Point)	p12	J
Buffer Calculations	p5	Solubility Problems	p14	
Disrupted Buffers: After Acid or Base are Added	p7	Impact on Solubility When Common Ions are Present	p16	
Titration-Related Problems	p9	Impact of pH on Solubility	p17	

Key Equations Given for Test:

For weak acids alone in water:	For weak bases alone in water:
$[\mathrm{H}^{+}] = \sqrt{\mathrm{K}_{\mathrm{a}} \mathrm{x} [\mathrm{W}\mathrm{A}]}$	$[OH^{-}] = \sqrt{K_{b}x[WB]}$
pZ = -logZ	pH + pOH = 14
General definition for p of anything	
$[H^+][HO^-] = 1.00 \text{ x } 10^{-14}$	$K_aK_b = 1.00 \text{ x } 10^{-14}$ for conjugate acid/base pair
For Buffer: $pH = pK_a + log[base]/[acid]$	$\Delta S^{\circ} = S^{\circ} (\text{products}) - S^{\circ} (\text{reactants})$
Henderson-Hasselbalch Equation	
$\Delta G^{\circ} = G^{\circ} (\text{products}) - G^{\circ} (\text{reactants})$	$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} \qquad (T \text{ in Kelvin})$

BUFFERS

- 1. A solution that contains a weak acid and its conjugate base in roughly equal concentrations is _____
 - a. neither acidic or basic.
 - b. a half-acid solution.
 - c. a buffer.

- d. a heterogeneous mixture.
- e. neutral.
- 2. Explain how a buffer solution manages to stabilize the pH against the addition of acid, base, or additional solvent (dilution).

Answer: A buffer consists of a weak acid and its conjugate base in roughly equal amounts. If acid is added to the solution, it is consumed by the conjugate base. If base is added to the solution, it is consumed by the weak acid. If the amounts are such that the ratio of conjugate base/weak acid concentrations doesn't change much, then the pH doesn't change much. Dilution does not affect the pH because this concentration ratio doesn't change upon dilution.

T S

3. Research with biochemical systems commonly requires buffers because _____

- a. that's just the way it is.
- b. proteins have a critical pH dependence in their structure and function.
- c. proteins decompose into constituent amino acids outside a certain pH range.
- d. proteins are buffers.
- e. salts are involved.
- 4. What reaction occurs as a hydrochloric acid solution is added to a solution containing equal concentrations of acetic acid and sodium acetate?

a
$$CH_3COOH + H^+ \rightarrow CH_3COOH_2^+$$

b $CH_3COO + H^+ \rightarrow CH_3COOH$
c. $CH_3COOH + HCl \rightarrow CH_3COO^- + H_2Cl^+$

d. $2CH_3COO^- + 2H^+ \rightarrow CH_3COO + H_2$ e. $CH_3COOH + H^+ \rightarrow CH_3CO^+ + H_2O$ buffer

3 10. Consider a solution initially containing 0.40 mol fluoride anion and 0.30 mol of hydrogen fluoride (HF). If 0.40 mol of NaOH are added to this solution, and the final volume is 1L, which of the following statements is FALSE? a) You'll essentially have a strong base solution at the end, with 0.7 mol NaF but with 0.1 mol NaOH at the end. The moles of strong base will essentially dictate the pH. b) The pH will have shifted to a higher, more basic pH c) The final pH will be 13. d) The final pH will be dominated by the NaF, so I'd need the $K_{\rm b}$ or $pK_{\rm b}$ in order to solve for the pH. e) none of the above Buffel 11. Consider a solution that contain 0.50 moles of KF and 0.50 moles of HE 1.0 L of water. If 0.10 mol (f NaOH) added to this buffer solution, the pH of the solution will get slightly _____ . The pH does not change more drastically because the NaOH reacts with the present in the buffer solution. higher, KF higher H lower KF d) lower, HF 12. Consider a solution that contains 0.50 moles of NaNO₂ and 0.50 moles of HNO₂ in 1.0 L of water. If 0.10 mol of HCl is added to this buffer solution, the pH of the solution will get slightly _____. The pH does not change more drastically because the NgA reacts with the ______ present in the buffer solution. HCI a) higher, NaNO₂ b) higher, HNO₂ Colower, $NaNO_2$ () lower, HNO_2 13. Identify all the correct statements about an acid-base buffer solution. I. It can be prepared by combining a strong acid with a salt of its conjugate base. II. It can be prepared by combining a weak acid with a salt of its conjugate base. III. It can be prepared by combining a weak base with its conjugate acid. **?** IV. The pH of a buffer solution does not change when the solution is diluted. V. A buffer solution resists changes in its pH when an acid or base is added to it. I, II, and IV d. I, II, IV, and V а II, III, and V e. II, III, and IV b. II, III, IV, and V pH = pKa + lo

Preparation and Recognition of Buffer Systems

	a) 1 only
	b) 1 and 2 only
(c) and 3 only
	d) 3 and 4 only
	e) all would give buffer solutions

WA WB 20. Calculate the pH of a solution that is 0.30 M in ammonia (NH₂) and 0.20 M in ammonium chloride $(NH_4Cl, K_a = 5.62 \times 10^{-10}).$ $pH = pK_{q} + log$ Steps:

21. Calculate the pH of a solution containing 0.40 mol fluoride anion and 0.30 mol of hydrogen fluoride (HF). (HF, $K_a =$ 7.2 × 10⁻⁴)? - Ka= 3 (4

 $H = 3,14 + 101 - \frac{-4}{3}$

a) 0.20 mol b) 0.30 mol c) 0.40 mol d) 0.50 mol e) none of the above

22. Calculate the pH of a solution that's 0.65M in NaF and 0.75M in HF. (HF, $K_a = 7.2 \times 10^{-4}$)? Steps: 1. Recognize: WA + WB = buffer

- ANSWER: 3.08 2. Solve: HH equation 3. Need: pKA
 - 4. Check: Does it make sense? -pH is close to pKa, acid side
- 23. Calculate the pH of a solution that's 0.65M in NaNO₂ and 0.40M in HNO₂. (NaNO₂, $K_a = 4.0 \times 10^{-4}$)? 3, 40 j/g

ANSWER: 3.61

Finding Aı Ba A Ra

- $pH = 3,40 + \log\left(\frac{.65}{.40}\right) =$ 3,609
- 24. To simulate the pH of blood, which (\$ 7.4, an undergraduate researcher in a biology lab produced a buffer solution by dissolving sodium dihydrogen phosphate (NaH₂PO₄, $K_a = 6.2 \times 10^{-8}$) and sodium hydrogen phosphate (Na₂HPO₄) together in an acueous solution. What mole ratio of Na HPO (NeH PO did she need to use?

pH=pKaf+li

1. Recognize: WA + WB = buffer

4. Check: Does it make sense? -pH is close to pK6, basic side

1. Recognize: WA + WB = buffer

4. Check: Does it make sense?

Steps: 1. Recognize: WA + WB = buffer

4. Check: Does it make sense?

1.56

2. Solve: HH equation 3. Need: pKA

-pH is close to pKa, basic side

2. Solve: HH equation

3. Need: pKA

2. Solve: HH equation

3. Need: pKA.

Steps:

=3.0

Disrupted Buffers. What Happens after Acid or Base is added.

32. Consider a solution initially containing 0.40 mol fluoride anion and 0.30 mol of hydrogen fluoride (HF). How many moles of hydrogen fluoride are present after addition of 0.20 mol of HCl to this solution? Note: Moles Given Directly

- HCL a) 0.20 mol Note: What reacts with what b) 0.30 mol What runs out first? c) 0.40 mol What's left at the end? d) 0.50 mol e) none of the above 33. Consider a solution initially containing 0.50 mol ammonia (NH₃) and 0.30 mol of ammonium ion (NH₄) How many moles of ammonia and how many moles of ammonium ion are present after addition of 0.20 mol of HCl to this solution? a) 0.30 mol NH₃, 0.50 mol NH₄⁺ Text a) 0.50 mol NH₃, 0.50 mol NH₄ a) 0.30 mol NH₃, 0.20 mol NH₄ a) 0.70 mol NH₃, 0.10 mol NH₄⁺ e) none of the above WB 34. Consider a solution initially containing 0.400 mol fluoride anion and 0.200 mol of hydrogen fluoride (HF). How many moles of hydrogen fluoride are present after addition of 70.0 m of 600M HCl this solution? a) 0.400 mol fluoride, 0.300 mol HF b) 0.442 mol fluoride, 0.258 mol HF c) 0.358 mol fluoride, 0.342 mol HF d) 0.213 mol fluoride, 0.567 mol HF e) none of the above Note: Moles Given Indirecti 35. Consider a solution initially containing 0.500 mol ammonia (NH₃) and 0.300 mol of ammonium ion (NH₄⁺). How many moles of ammonia and how many moles of ammonium ion are present after addition of 40 mL of 0.800M NaOH °0H + ^G to this solution? NH_{4} a) $0.532 \text{ mol NH}_3, 0.268 \text{ mol NH}_4^+$ a) 0.532 mol NH₃, 0.332 mol NH₄ a) 0.468mol NH₃, 0.268 mol NH₄ a) 0.700 mol NH₃, 0.100 mol NH₄ e) none of the above 36. Consider a solution initially containing 0.40 mol fluoride anion and 0.30 mol of hydrogen fluoride (HF). What is the **pH** ter addition of (.20 mol of HCT) this solution? (HF, $K_a = 7.2 \times 10^{-4}$)? = 0 ANSWER: 2.74 Mol 7

Text

Note: In the problems on this page, there was never enough SA or SB added to exhaust the buffer. You STILL had a buffer at the end. But, there can be other situations in which the buffer capacity is more than exhausted. In which case you will NOT end with a buffer, and you won't end up solving by Henderson-Hasselbalch.

37. Consider a solution initially containing 0.400 mol fluoride anion and 0.300 mol of hydrogen fluoride (HF). What is the pH after addition of 70.0 mL of 0.600M HCl to this solution? (HF, $K_a = 7.2 \times 10^{-4}$)? \rightarrow 1/2

38. Consider a solution initially containing 0.50 mol ammonia (NH₃) and 0.30 mol of ammonium ion (NH₄⁺). What is the <u>pH</u> after addition of 0.20 mol of HCl to this solution? (NH₄⁺, $K_a = 5.6 \times 10^{-10}$)? HCl + //H₂ -> //H₄

ANSWER: 9.03

39. Consider a solution initially containing 0.500 mol ammonia (NH₃) and 0.300 mol of ammonium ion (NH₄⁺). What is the pH after addition of 40 mL of 0.800*M* NaOH to this solution? (NH₄⁺, $K_a = 5.6 \times 10^{-10}$)?

40. Calculate the pH of a solution originally containing 0.20 mol of cyanic acid HCNO following addition of 80 mL of 1.00 M NaOH. (K_a of HCNO = 3.5 x 10⁻⁴). The initial volume of the cyanic acid solution was 920 mL, so the final combined volume at the end is 1.0 L.

HOG + HCNO -J 080 -000 E -000 -000 120 WA a) 3 b) 3.39 c) 3.46 d) 3.64 e) none of the above md 8H= .080 L [md = .080 md

41. Consider a solution initially containing 0.300 pool of hydrogen fluoride (HF). How many grams of NaF (42.0 g/mol) would be needed to set the pH = 3.00? (HF, $K_a = 7.2 \times 10^{-4}$)? Making a Buffer.

Making a Buffer. ANSWER: 9.07g H+pKa→bla ratio Given moles acid → moles bare ,300 ut acid

Titration Related Problems

Di- or triprotic acids. A di- or triprotic base would be one that can absorb 2 or 3 H's.

42. In a titration of nonoprotic acids and bases, there is a large change in pH_

- a. at the point where $pH = pK_a$ of the acid.
- b. when the volume of acid is exactly equal to the volume of base.
- c. when the concentration of acid is exactly equal to the concentration of base.
- when the number of moles of acid is exactly equal to the number of moles of base.
- e. at the point where $pH = pK_b$ of the base.
- 43. At what point in the following titration curve for a weak acid being titrated with a strong base is the pH equal to the pK_a of the acid? The x-axis scale goes from 0.0 mL to 20.0 mL. The sharp rise is at 10.0 mL.

- 44. When an acetic acid solution is titrated with sodium hydroxide, the slope of the titration curve (pH vs volume of NaOH added) increases when sodium hydroxide is first added. This change shows that
 - a. nothing is happening during this part of the titration.
 - b. the reaction is very slow during this part of the titration.
 - a more concentrated solution of NaOH needs to be present to initiate the reaction.
 - d acetic acid is being converted to sodium acetate.
 - e. the pH is not affected until all the acetic acid is consumed.

45. Halfway to the equivalence point in a titration curve of a weak acid with a strong base, _____

50. A 0.500 g sample of an unknown substance was titrated with a 0.1 *M* HCl solution. Another 0.500 g sample of it was titrated with a 0.1 *M* NaOH solution. The resulting titration curves are illustrated here. Given the following possibilities, what is the sample?

1. Equivalence point Moles acid Moles base 2. To know one is to know the other. 3. One is usually provided indirectly moles = M x Volume in Liters, or from grams and mw) **Titration Calculations and Related Calculations.** 51. A solution of hydrochloric acid (HCl, 25,00 mL) was titrated to the equivalence point with 34.55 mD of (1020 M sodium hydroxide. What was the concentration of the hydrochloric acid? Approach 1: 1. Find moles base .003354 md 2. Moles base = moles acid 0.0353 M d. a. 0.07048 M 3. Moles/volume (of the acid) = molarity 0.1410 *M* 0.0533 M 4.075 L e 0.2819 M Approach 2: the Ratio method Molarity of acid = Molarity of base x Volume Ratio Finding Unknown Molarity 52. A solution of hydrochloric acid (HCl, 40.00 mL) was titrated to the equivalence point with 22.0 mL of 0.320 M/sodium hydroxide. What was the concentration of the hydrochloric acid? 0.07048 M d. 0.0353 M 0.178 *M* None of the above e. 0.282 M 53. A solution of sodium hydroxide (NaOH 30.00 mL) was titrated to the equivalence point with 26.0 mL of 0.80 M HCl. What was the concentration of the sodium hydroxide solution? $\begin{array}{c}
 \hline \textbf{d.} & \hline \textbf{0.693 } M \\
 \hline \textbf{e.} & \text{None of the above } \hline \textbf{OH} = \begin{pmatrix} \textbf{80} \\ \textbf{80} \\$ 1.44 M a. b. 0.178 M 0.282 M c. 54 A solution of sulfuric acid (H₂SO₄, 25.00 mL) was titrated to the second equivalence point (both protons were removed) with 34.55 mL of 0.1020 M sodium hydroxide. What was the concentration of the sulfuric acid? 1 H2 Qu + 2 NOCH a. 0.07048 *M* d. 0.0353 M 0.1410 M 0.0533 M b. e. **Polyprotic:** 0.2819 M c. Not 1:1 ratio 55. What volume of 0.80 M NaOH will be required to titrate a 20.0 mL solution of 0.60M hydrochloric acid to the equivalence point? inding a. 15 mL d. 30 mL Unknown 20 mL None of the above e. Volume 25 mL c. Using 56. What volume of 0.80 M HCl will be required to titrate 36.2 grams of NaBrO (fw = 118.9 g/mol) to the equivalence Grams point? d 308 mL e. None of the above instead of x L= (+304) 150 mL a. Volume to b. 381 mL Provide c. 258 mL Known Moles = ,381 L One brand of extra-strength antacid tablets contains 750 mg of calcium carbonate (100 g/mol) in each tablet. Stomach Harder One acid is essentially a hydrochloric acid solution. Is so much calcium carbonate really needed to neutralize stomach acid? g => molCalculate the volume of stomach acid with a pH of 1.0 plat one of these tablets could neutralize, and compare that 2:1 stoich value with the normal volume of stomach fluid, which usually is about 100 mL. One tablet can neutralize <u>рН => [[</u>+] mL of stomach acid at a pH of 1.0. (Remember, one carbonate can absorb not just one but two protons.) Mol= 1005 + 2Ht -> HCQ volume d. 15 7.5 e. 250 x mL HCI = .0150 md AH ≈1.0 MO HCI : .0150 HC

	12
<u>pH</u> 58.	I Estimations or Calculations after acid or base are added (including at Equivalence Point) Which of the following combinations would give a pH of 7.00 at the "equivalence point" (when equal moles of each
5	have been added)?
	a) HCl + KF HF + KCl acidic H/A
S	c) HF + HCl No reaction, WA SA acidic
(H2O + KCl neutral. Strong acid + strong base => neutral
59.	Which of the following combinations would give a pH <u>above</u> 7.00 at the "equivalence point" (when equal moles of basic
11/4	a) HCl + KF HF + KCL acidic b) HCN + NaOH H2O + NaCN basic 4
w n	c) HF + HCl No reaction, WA + SA = acidic d) HCl + KOH H2O + KCl neutral Strong acid + strong base => neutral
	a) her - Ren
60	Which of the following combinations would give upt below 7.00 of the "equivalence point" (when equal moles of
00.	each have been added)?
(a/HCl+KFWS HF+KCl acidic
5	b) $HCN + NaOH$ $H2O + NaCH$ basic c) $NH_3 + NaOH$ No reaction, $WB + SB = basic$
S T	d) HCI + KOH H2O + KCl neutral. Strong acid + strong base => neutral
<mark>'</mark>	R
_	OH -> PH -> PH
1. WA $=>$ WB	Crycolic acid, which is a monoprotic acid and a constituent in sugar cane, has a pK_a of 3.9. (25.0 mL solution of glycolic acid is titrated to the equivalence point with 35.8 mL of 0.020 M sodium hydroxide solution. What is the pH
at equivalence 2. For WB,	of the resulting solution at the equivalence point?
need Kb and WB1	a. 5.10 pKg - pKy - Kb (7.94 x10, 4.92
3. To calculate [WB], need both	b. $\frac{7.98}{100} = \frac{1000}{100} = \frac$
moles and combined	PHO J = PHO ZOUS = U(110 Hold Vote to the second
volume	$md \ base = (7.16 \times 10^{-100}, 0608 L)^{-100} (18md) \ pH = 7.98 \ c$
1. WB = WAat	Quinine is a weak base, with $pK_b = 5.10$. What is the pH if a 25.0 mL solution originally containing 0.125 molecular quinine is titrated with HCl to the equivalence point, and if the combined total volume at the end (s 56.0 mL?)
equivalence 2. For WA,	a. 5.10 ws -7 ws d. 4.28
need Ka and [WA]	b. 7.98 c. 8.72 μ = $\sqrt{2}$ e. None of the above $\sqrt{2}$ = 1.54 μ
3. To calculate [WA], need both	$\mu^{+} = \sqrt{\frac{1}{2}} + \frac{1}{2} + 1$
moles and combined	K=5.10 - Ka= 8.9 = Ka= 1.26×10 / / / / / / / / / / / / / / / / / / /
volume	A 25.0 mL solution of quinine was titrated with 1.00 <i>M</i> hydrochloric acid, HCl. It was found that the solution
1. Don't assume equivalence point	originally contained 0.125 moles of quinine. What was the pH of the solution after 50.00 mL of the HCl solution were added? Quinine is monobasic with $pK_{c} = 5.10$
unless told so. This one isp't!	a. 5.10 $d_{-4.92}$ mol HCI = $(1.0 \text{ mol}) \cdot 0.50\text{ L} = 0.5 \text{ mol}$
2. Do "ICE" to figure out what	b. 8.90 c. 8.72
you have. 3. Here, buffer, so	$6112 \qquad 6112 \qquad $
use Henderson-Ha 4. Need pKa	6+ HCI -> BH 1" - 1.050
	I .125 .050 ~C
	$\frac{C050050 \cdots .000}{E 0.050} \text{(JA/WA = buffer)}$

Solubility Problems

67. Write the reaction equation and the equilibrium constant expression that describes lead chloride (PbCl₂) dissolving in water.

Answer: $PbCl_2(s) \rightarrow Pb^{2+}(aq) + 2Cl^{-}(aq)$ $K_{sp} = [Pb^{2+}] [Cl^{-}]$ $2x = x 4x^2 = 4x^3$ Зx Х K

68. The solubility product for an insoluble salt with the formula MX₂ is written as _____, where x is the molar colubility

solution y.
a
$$K_{sp} = x^{2}$$

b $K_{sp} = 4x^{3}$
c $K_{sp} = 4x^{2}$
c $K_{sp} = 2x^{3}$
c $K_{sp} = 2x^{2}$
c $K_{sp} = 4x^{2}$
c $K_{sp} = 4x^{2}$
c $K_{sp} = 4x^{2}$
c $K_{sp} = 4x^{2}$

69. When lead <u>chloride</u> (PbCl₂) is placed in otherwise pure water, enough dissolves such that the concentration of lead ions Pb (42/5) -> (162+ + 2C1becomes 0.036 *M*. What is the K_{sp} for lead chloride (PbCl₂)?

from Molar **Solubility**

Find Ksp

d. $K_{sp} = 1.9 \times 10^{-4}$ e. None of the above a. $K_{\rm sp} = 1.9 \times 10^{-6}$ b. $K_{\rm sp} = 2.3 \times 10^{-5}$ c. $K_{\rm sp} = 4.3 \times 10^{-6}$

70. Consider the following table of K_{sp} values.

 $\frac{K_{sp}}{7.4 \text{ x } 10^{-14}}$ Compound PbCO₃ 1.4 x 10⁻¹¹ ZnCO₃ 6.3 x 10⁻¹⁴ CePO₄ 8.0 x 10⁻²⁸ PbS

Which one of the compounds shown in the table is the least soluble?

a) PbCO₃

b) ZnCO₃ c) CePO₄

d) PbS

a) 3.9 x 10⁻¹¹ b) 6.2 x 10⁻⁶ c) 3.4 x 10⁻⁴ d) 2.1×10^{-4}

e) none of the above

71. The solution of AgBr is $5.4 \ge 10^{-13}$ mol/L. What is the V_{ep} of AgBr?

Find Molar a) 5.4 x 10⁻¹³ solubility from b) 7.3 x 10⁻⁷ Ksp c) 9.5 x 10⁻⁵ d) 3.0 x 10⁻¹⁰ e) none of the above 72. The solution of CaF₂ is 3.9×10^{-11} mol/L. What is the K_{sp} of CaF₂?

Ag br (s) $\rightarrow |Ag^+ + |Bf^ X = 7.3 \times 10^{-7}$

K= [164](13 = (.036)(.072)2

 $C_{\alpha}F_{3}(s) \longrightarrow IC_{\alpha}^{2+} + \mathcal{F}^{-} \qquad \begin{array}{c} F_{-}(x)(\lambda x)^{2} = 3.9 \times 10^{-11} \\ \times & 2 \times \\ & & & & \\ & & &$ x= 2.1×10-4

73. What is the solubility of barium sulfate in otherwise pure water? The K_{sp} value for barium sulfate is 1.1×10^{-10} . basey -> Bat + SG2-

 $7.4 \times 10^{-6} M$ a. b. $5.5 \times 10^{-11} M$ $1.0 \times 10^{-5} M$

d. $2.2 \times 10^{-9} M$ e. $1.1 \times 10^{-10} M$

74. Stalactites-the long, icicle-like formations that hang from the ceilings of caves-are formed from calcium carbonate. The K_{sp} of calcium carbonate is 4.5×10^{-9} . What is the **concentration of calcium ions** in a saturated calcium carbonate solution? $Cq CO_3 \longrightarrow |Cq^{2t} + |CO_3^{2t}|$ $K = 4.5 \times |O^{-q} = \sqrt{2}$

0.00104 M a. b. $4.5 \times 10^{-9} M$ $6.7 \times 10^{-5} M$

 $4.1 \times 10^{-6} M$

d. $2.25 \times 10^{-9} M$ e. $4.5 \times 10^{-5} M$

75. Lead pipes were used at one time for delivering drinking water. What is the maximum possible concentration of lead in this water if it comes from lead(II) hydroxide ($K_{sp} = 2.8 \times 10^{-16}$) dissolving from the surface of the pipes? Note the EPA limit on lead in drinking water is $7.2 \times 10^{-8} M$.

 $\begin{array}{c} \text{d.} 5.1 \times 10^{-6} M \\ \text{e.} 8.3 \times 10^{-9} M \end{array} \qquad \begin{array}{c} \text{fb}(OH) \\ \text{K} \\ \text{K}$ D. $1.6 \times 10^{-8} M$ c. $6.5 \times 10^{-6} M$ 76. The solubility of PbBr₂ is 0.427 g per 100 mL of solution at 25°C. Determine the value of the solubility product $\begin{array}{c} \text{(b)} & \text{(b)} & \text{(b)} & \text{(b)} & \text{(b)} & \text{(b)} & \text{(c)} & \text{(c$ 1. Find Ksp from constant for this strong electrolyte. solubility 5.4×10^{-4} 2.7 × 10⁻⁴ 3.1 × 10⁻⁶ d. 1.6×10^{-6} e. 6.3×10^{-6} 2. Solubility given a. in g/mL rather than b. molarity 3. Here, needed to calculated mw in K= [162+Vbr]2 =, 0116 <u>md</u> = x order to convert g => mol 77. Purveyors of salts from the Dead Sea advertise that it is healthy to bathe in a saturated solution of magnesium chloride 1. Ksp => $(MgCl_2, 95.21 \text{ g/mol}, K_{sp} = 740)$. How much magnesium chloride would you have to purchase to make up 10.0 L of

molar solubility bath water saturated with magnesium chloride? 2. Actual volume => a. 9.0 kg 12 kg actual moles b. MgCly → Mg+ +2Cl 2× 4x3=740 57 kg 3. Actual moles c. => actual grams 1 v =5,698 md/1

78. Stalactites—the long, icicle-like formations that hang from the ceilings of caves—are formed from calcium carbonate. Droplets saturated with calcium carbonate hang and evaporates, leaving solid calcium carbonate behind. The K_{sp} of 1. Ksp =>calcium carbonate is 4.5×10^{-9} . What is the volume of water droplets saturated with calcium carbonate that would be molar solubility required to form a small stalactite that had a mass of 1.0 kg? 2. Actual grams => actual Ca CO1 -7 Ca2++CO2d. 4.5×10^4 L e. 1.5×10^4 L a. $1.4 \times 10^{6} L$ moles $1.5 \times 10^{5} L$ b. 3. Actual moles K=(4,5 x0 c. $4.5 \times 10^{9} L$ \Rightarrow volume xL=1.0kg/1000 $CaCO_3 = 100.9$

15

 $K = \chi^2$

× g= 101 5.64 md 95.21g 1 leg

L-> md -> a

a. ionic suppression effect.b. counter ion effect.

common ion effect.

d. excession effect.

e. supersaturation effect.

1.	С	42.	D
2	Answer: A buffer consists of a weak acid	43.	В
	and its conjugate base in roughly equal	44	_ D
	amounts If acid is added to the solution it	45	P
	is consumed by the conjugate base. If base	45.	
	is added to the solution, it is consumed by	40.	D
	the weak acid. If the amounts are such that	47.	B
	the ratio of conjugate base/weak acid	48.	D
	concentrations doesn't change much, then	49.	C
	the pH doesn't change much. Dilution	50.	В
	does not affect the pH because this	51.	В
	concentration ratio doesn't change upon	52.	В
	dilution.	53	D
3.	В	54	Δ
4	B	55	٨
5	C C	55.	
5.	A	50.	B
0.	A	57.	В
/.	A	58.	D
8.	D	59.	В
9.	А	60.	A
10.	D	61.	В
11.	В	62.	D
12.	С	63	F
13	C	64	Λ
14	B	04. 65	
14.		05.	Б С
15.	D E	66.	C
10.		67.	$PbCl_2(s) \rightarrow Pb^{2'}(aq) + 2Cl^{-}(aq)$
17.	D		$K_{\rm sp} = [{\rm Pb}^{2+}] [{\rm Cl}^{-}]^2$
18.	С	68.	В
19.	C	69.	D
20.	9.43	70.	D
21.	D	71.	В
22.	3.08	72	D
23.	3.61	73	C C
24	В	73.	C
25	C	74.	
25. 26	A	/5.	A
20.		76.	E
27.	A	77.	D
28.	C	78.	В
29.	A	79.	D
30.	D	80.	С
31.	D	81.	A
32.	D	82.	D
33.	А	83.	D
34.	С	84	C
35	А	Q.4.	~ F
36	2 74	05.	Δ
20.	3.16	00.	
27. 20	0.02	δ/.	
38. 20	9.05	88.	
39.	9.55	89.	D
40.	A	90.	E
41	9 07 o		

<mark>5</mark> 5 ▼ 5